This document relates to version 7.0.1 of the IW in which the process was created.

Contents

Description of the handle fault process (template)
Intention of usage
Environment, changes for asynchronous setting
Description of the process
Handling of the „error“ part
Handling of the original part
Handling the transformed part
Description of the package structure

Jan Völker

proALPHA Consulting AG

An der Strusbek 60-62

22926 Ahrensburg

Germany

jan.voelker@proalpha.de

Description of the handle fault process (template)

Intention of usage

The handle fault process covers a common use case in the domain of message exchange in the ESB environment: An incoming message has to be transformed, processed and eventually replied to. In the course of this process error handling has to take place on the base of up to three different messages: the original incoming message, the transformed internal version and eventually an error message produced by the processing. The handle fault process can be used as a template for error handling based on these assumptions.

Environment, changes for asynchronous setting

Originally the process has been developed for a HTTP Request/Reply service. The handle fault process is then set-up as listening on the fault endpoint of the main process which receives the requests and returns the replies. If a reply to the sender of the request is necessary it will handle that as well as abort without sending a reply if that should be the case (see Handling the transformed part below).

For an asynchronous setting only minor changes should be applied for the handling for the transformed part which are described there.

Description of the process

The XML Transformation service (XSL-S in the following) transforms a message part by overwriting the original part. To be able to get back to the original message the part has to be copied before the transformation. Therefore the process assumes that transformed part is the first part of the resulting message and the original is stored the in the second part and marked with “Copy” as content id. However those content ids tend to get lost over the course of the process. It can be assumed though that a processing service, can tag it’s error output with a content id “error”.

The handle fault process first uses an empty XSL-S to make it possible for the process to start with a fanout.

Handling of the „error“ part

On the right hand side a CBR, using a JavaScript rule, strips the ESB message of all parts but those starting with the content id “error”. This enables the following preprocessing and processing services to work with just one part (by default each service works on the first part). In the given example the process isolates some error description from the error part and drops it.

A more practical example would be the formatting and sending of an email or the transformation of the error information for some error handling system and the following processing by that system.

On the left hand side of the first fanout after a second (dummy) fanout the process handles the original and the transformed part.

Handling of the original part

The CBR for the isolation of the original message part relies on the content id “original” and otherwise works the same as for the error part.

Since an error occurred (handle fault normally receives messages via a fault endpoint) it might be a good idea to keep the message that produces the error. That’s all this part does with the original so far. However the reply check (see below) can be done here as well – depends on where the conditions are easier to check.

Handling the transformed part

The script for the transformed message part eliminates all parts that do not have an empty content id. In the described setting then only the transformed part remains. With that isolated a check can be made if the reply to the sender’s request should be made. This check can be everything and as written above might as well be done easier or only with the original message part. The logic after the check will remain the same:

In case a reply should be send the remaining message part is transformed by an XSL-S to be understandable by the process on the other side. Otherwise the process flow is directed to an endpoint which leads nowhere, so that no reply is made (“trash endpoint”).

If the process runs in an asynchronous setting the trash endpoint is not necessary but the just transformed message part has to be actively send back to the other side.

Description of the package structure

For the ESB projects at our company we are in the process of trying certain structure which is reflected in the contents of the package. In this case everything is located in the main-branch where the handle fault.esbp is most interesting (look in processes) which links all other files via its service instances.

Worthy of a remark might as well be the Test.esbmsg which can be found in the resources directly under main and for the main process, which can use the fault handling process at its fault exit, a script is included (copyOriginal.js) which can be used via a CBR to copy a message part before the transformation to retain the original message.

